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Interrogation of the microenvironmental landscape
in spinal ependymomas reveals dual functions of
tumor-associated macrophages
Qianqian Zhang1,2,9, Sijin Cheng1,9, Yongzhi Wang3,4,9, Mengdi Wang1,9, Yufeng Lu1,2, Zengqi Wen1, Yuxin Ge5,

Qiang Ma1,2, Youqiao Chen5, Yaowu Zhang3,4, Ren Cao3,4, Min Li1,2, Weihao Liu3,4, Bo Wang3,4,

Qian Wu 5,6,10✉, Wenqing Jia 3,4,10✉ & Xiaoqun Wang 1,2,6,7,8,10✉

Spinal ependymomas are the most common spinal cord tumors in adults, but their intratu-

moral cellular heterogeneity has been less studied, and how spinal microglia are involved in

tumor progression is still unknown. Here, our single-cell RNA-sequencing analyses of three

spinal ependymoma subtypes dissect the microenvironmental landscape of spinal ependy-

momas and reveal tumor-associated macrophage (TAM) subsets with distinct functional

phenotypes. CCL2+ TAMs are related to the immune response and exhibit a high capacity for

apoptosis, while CD44+ TAMs are associated with tumor angiogenesis. By combining these

results with those of single-cell ATAC-sequencing data analysis, we reveal that TEAD1 and

EGR3 play roles in regulating the functional diversity of TAMs. We further identify diverse

characteristics of both malignant cells and TAMs that might underlie the different malignant

degrees of each subtype. Finally, assessment of cell-cell interactions reveal that stromal cells

act as extracellular factors that mediate TAM diversity. Overall, our results reveal dual

functions of TAMs in tumor progression, providing valuable insights for TAM-targeting

immunotherapy.
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Ependymal tumors are neuroepithelial malignancies located
in both the brain and spinal cord1, and spinal ependymo-
mas are the most common spinal cord tumors in adults,

comprising ~60% of all intramedullary neoplasms2. Surgical
resection remains the mainstay of treatment for this disease. Due
to the invasive growth of tumor cells, it is difficult to completely
remove tumors without obvious tumor margins, and aggressive
surgical removal is accompanied by potentially severe sensory
and motor dysfunction3,4. For patients with subtotal resection
who do not receive adjuvant radiotherapy, the recurrence rate of
tumors is up to 50–70%4. Therefore, there is an urgent need to
identify novel therapeutic targets for spinal ependymomas.

In the past decade, studies focused on genomics, tran-
scriptomic, and methylomics have greatly expanded our under-
standing of the biology underlying human ependymomas.
Extensive genomic and transcriptomic analyses uncovered
ependymoma oncogenes and tumor suppressor genes5 and
revealed neural stem cells and glial cells as putative cells of
origin6,7. The molecular events involving chromosome 22 and
mutation of the NF2 gene have long been known as hallmark
genetic aberrations of spinal ependymomas8. Genome-wide DNA
methylation profiling of ependymomas identified nine molecular
subgroups, three in each anatomical compartment of the central
nervous system (CNS), including the spinal, posterior fossa, and
supratentorial areas, which could help the precise diagnosis and
risk stratification of ependymoma patients in the clinic1. Within
the spinal ependymoma histopathological subtypes, sub-
ependymoma (SE) and ependymoma (EPN) are considered as
CNS WHO grade I and II with good prognosis, while anaplastic
ependymoma (AEP) are considered as grade III showing
aggressive identity9. The previous studies were informed by bulk
tumor samples and largely focused on the developmental origins
and candidate driver genes of ependymomas.

Single-cell RNA-seq (scRNA-seq) and single-cell ATAC-seq
(scATAC-seq) technologies have been successfully applied to
characterize tumor heterogeneity at single-cell resolution10 and
have revealed the cellular diversity of the tumor microenviron-
ment (TME) in multiple cancer types11–18. Recent studies have
begun to reveal the cellular heterogeneity of malignant cells in
ependymomas by using scRNA-seq19,20, with samples mainly
collected from childhood brain ependymomas. However, the
cellular diversity in spinal ependymomas, especially the com-
plexity of stromal and immune cells, remains less studied. Recent
advances in cancer treatments targeting tumor-infiltrating
immune cells have emerged21. Microglia are the resident mac-
rophages in CNS parenchyma and have emerged as a promising
cellular target for tumor immunotherapy considering their roles
in neuroinflammation22. We speculate that a deep understanding
of tumor-associated macrophages would reveal potential ther-
apeutic targets for ependymomas.

In this work, we perform scRNA-seq, scATAC-seq, and bulk
epigenetic ChIP-seq analyses of cells isolated from patients
diagnosed with spinal cord ependymomas, determining the
diversity of malignant cells and immune cells in these spinal cord
ependymomas. Two distinct TAM subsets with different onto-
genies and dual functional phenotypes could play crucial roles in
tumor growth and invasiveness, which may inform TAM-
targeting immunotherapy strategies in human ependymomas
and other cancers.

Results
Intratumoral cell types in spinal ependymomas revealed by
scRNA-seq and scATAC-seq. To comprehensively catalog the
cellular heterogeneity of spinal ependymomas, we performed
droplet-based scRNA-seq (10× Genomics) on cells isolated from

tumor tissues of 15 treatment-naive patients diagnosed with
different subtypes of spinal ependymoma, including sub-
ependymoma (SE, three patients), ependymoma (EPN, 9
patients), and anaplastic ependymoma (AEP, three patients)
(Fig. 1a, b and Supplementary Data 1). Notably, SE patients
exhibited the lowest degree of malignancy among the three sub-
types (Fig. 1b). With strict quality control and filtration
(“Methods”), a total of 149,244 cells with a median of 6334
unique molecular identifiers (UMIs) and 2757 genes were
retained for downstream analysis (Supplementary Fig. 1a). We
first distinguished nonmalignant cells (using canonical gene
markers of stromal and immune cells) from malignant cells in the
first round of graph-based unsupervised clustering (Supplemen-
tary Fig. 1a, b) and found that malignant cells clustered according
to tumor origin, while nonmalignant cells clustered by cell type
(Fig. 1c and Supplementary Fig. 1c), consistent with previous
studies23–25. We then separated nonmalignant cells from malig-
nant cells and identified 14 cell types according to the expression
of canonical gene markers, including markers of CD8+ T cells,
CD4+ T cells, B cells, mast cells, conventional dendritic cells
(cDCs), plasmacytoid dendritic cells (pDCs), monocytes, TAMs,
fibroblasts, endothelial cells, and pericytes (Fig. 1d, e, Supple-
mentary Fig. 1d, and Supplementary Data 2). To validate cells
classified as malignant, we further inferred large-scale copy-
number variations (CNVs) based on scRNA-seq expression
profiles with stromal and immune cells as controls23–27 and
detected large-scale CNVs in malignant cells from each patient
but not in nonmalignant cells, including the reported 22q loss8 in
all nine EPN patients (Fig. 1f), which confirmed the rationality of
the unsupervised clustering. We then compared the cell-type
percentages in each patient and observed that the abundance of
malignant cells and the composition of stromal and immune cells
varied across patients (Supplementary Fig. 1e, f), suggesting a
considerable degree of tumor heterogeneity. These results provide
a basic description of the TME cellular composition of human
ependymomas.

We also generated scATAC-seq data from cells isolated from
tumor tissues of two AEP patients to capture the chromatin
regulatory landscape that governs transcription dynamics in
spinal ependymomas with the highest degree of malignancy. In
total, 2854 cells with 635,774 reproducible peaks of chromatin
accessibility passed strict quality control and were used for the
downstream analysis (Supplementary Fig. 2a). We identified five
distinct clusters based on unsupervised clustering and annotated
their cell types. Two of those clusters exhibited specifically
accessible peaks neighboring OPC markers (OLIG1 and OLIG2)
and TAM markers (PTPRC and CD68) (Supplementary Fig. 2b,
c). The remaining clusters were regarded as malignant cells that
showed high patient specificity and were annotated as
astroependymal-like cells, ependymal-like cells, and neuronal-
like cells (Supplementary Fig. 2b, c).

Two TAM subsets show distinct functional phenotypes in
ependymomas. We next focused on the heterogeneity of mono-
cytes and TAMs and performed unsupervised graph-based clus-
tering of their transcriptomes, which resulted in seven subclusters
with unique signature genes, including two monocyte subsets
(classical CD14+ and nonclassical CD16+ monocytes) and five
TAM subsets (Fig. 2a, Supplementary Fig. 3a, and Supplementary
Data 3). The tissue-resident microglia-like TAMs in cluster 1
(TAM_CX3CR1) were characterized by high expression of the
complement gene C1QC and the microglia homeostatic gene
CX3CR1, similar to the reported homeostatic microglia subset in
the brain28. The proliferative TAMs in cluster 2 (TAM_MKI67)
were characterized by cell cycle gene expression, including
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Fig. 1 Intratumoral cell types in spinal ependymomas revealed by scRNA-seq. a Scheme of the overall study design. scRNA-seq (10× Genomics) was
applied to cells isolated from three subtypes of spinal ependymomas. b Hematoxylin and eosin (HE) staining of tumors from different cancer subtypes. The
scale bar represents 30 μm. Images shown are representatives of more than three samples from three independent experiments. c Uniform Manifold
Approximation and Projection (UMAP) plot showing the patient distribution of malignant cells, without donor effect correction. d UMAP plot of stromal
and immune cell types from all patients (SE1-3, AEP1-3, EPN1-9), donor effect corrected by BBKNN. e Heatmap showing the expression of canonical gene
markers of stromal and immune cell types. f Inference of copy-number variations (CNVs) from scRNA-seq. Each row corresponds to a cell. The top panel
represents nonmalignant cells, and the bottom panel represents malignant cells, ordered by the patient. See also Supplementary Figs. 1 and 2 and
Supplementary Data 1 and 2.
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expression ofMKI67 and TOP2A. The interferon-activated TAMs
in cluster 3 (TAM_ISG15), which constituted a small population
of TAMs, expressed high levels of interferon response genes, such
as ISG15 and IFIT3. The pro-inflammatory TAMs in cluster 4
(TAM_CCL2) showed high expression of the pro-inflammatory
mediator IL1B and CNS inflammation-associated chemokines29

(CCL3, CCL4, and CCL2) (Supplementary Fig. 3b), resembling
the pre-activated subset reported in normal brain samples from
both humans and mice28,30,31. We noticed that the CCL2+ pro-
inflammatory TAMs also exhibited high expression of apoptosis-
related genes, such as PMAIP1 and NEDD9 (Supplementary
Fig. 3b). Enrichment analysis further confirmed that CCL2+
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TAMs showed high activity in both inflammatory response and
apoptosis pathways (Fig. 2b and Supplementary Data 4). The
remaining TAMs, falling into the pro-angiogenic TAM cluster
(TAM_CD44, cluster 5), were characterized by high expression of
the angiogenesis-associated genes CD4432 and VEGFA33 (Sup-
plementary Fig. 3b). Analysis of the hallmark angiogenesis
pathway in CD44+ TAMs using gene set enrichment analysis
(GSEA) revealed a significant enrichment of tumor angiogenesis
(Fig. 2c), suggesting a pro-tumorigenic role in ependymomas. We
then investigated the relationship of CD44+ TAMs with patient
prognosis and found that higher expression of signature genes of
CD44+ TAMs was associated with a worse clinical outcome in
similar cancer types from The Cancer Genome Atlas (TCGA),
including brain lower-grade glioma (LGG) and glioblastoma
(GBM) (Fig. 2d and Supplementary Fig. 3c). Using immuno-
fluorescence (IF) staining of tumor sections from EPN and AEP
patients, we confirmed the presence of CCL2+ TAMs and CD44+

TAMs as subgroups (Fig. 2e and Supplementary Fig. 3e) and
observed higher proportions of these two TAM subsets in AEP
(Supplementary Fig. 3d). Notably, the functional potentiality of
each TAM subcluster was implied by their signature genes and
additional validation experiments are required to fully elucidate
their biological characteristics in the future.

We then examined the regulatory networks that underlie each
TAM subset. Using SCENIC34, we identified specific transcrip-
tion factor (TF) regulons in each TAM subset (Fig. 2f). We
observed that the IKZF1 and EGR3 regulons, which are related to
regulating inflammatory genes35,36, were highly activated in
CCL2+ TAMs (Fig. 2f). The activated TEAD1 regulon was
specifically found in CD44+ TAMs (Fig. 2f), and TEAD1 has been
reported to directly promote human glioblastoma cell migration37

and regulate pro-angiogenic activity through YAP1-TEAD1-
PGC1α signaling in endothelial cells38. To complement the
regulons predicted from the scRNA-seq data, we further analyzed
the scATAC-seq data of TAMs. Using the TAM subpopulations
derived from the scRNA-seq data as a reference, we identified
three TAM subpopulations (TAM_CX3CR1, TAM_CCL2,
TAM_CD44) with the scATAC-seq data, and each subpopulation
exhibited specific differentially accessible (DA) sites, which could
affect marker genes of TAM subpopulations (Fig. 2g, Supple-
mentary Fig. 2d, e, and Supplementary Data 5). We reasoned that
due to the limited number of captured cells, other TAM
subclusters were missed in our scATAC-seq data. We then
applied motif enrichment analysis to cluster-specific accessible
peaks to determine potentially key TFs in each TAM subcluster.
Strikingly, we observed that the binding motif of TEAD1 was
enriched in CD44+ TAMs and that one of its binding sites was

located close to the transcription start site (TSS) of VEGFA
(Supplementary Fig. 2f). Furthermore, TEAD1 was found to be
the upstream regulator of several signaling pathways, including
tumor angiogenesis, the cell transformation signature, and
VEGFA-EGFR2 signaling (Fig. 2i), indicating its possible role in
driving the pro-angiogenic phenotype. For CCL2+ TAMs, we
uncovered enrichment of the EGR3 motif, whose target genes
were related to the regulation of TNF-related weak inducer of
apoptosis (TWEAK) signaling and the TNF pathway (Fig. 2h),
suggesting the important role of EGR3 in promoting the
antitumor phenotype of CCL2+ TAMs. Overall, our scRNA-seq
and scATAC-seq analyses unearthed plausible regulatory
mechanisms that shape the functional diversity of TAMs in
ependymoma.

We next examined the expression pattern of the M1 and M2
macrophage signatures in these TAM subsets and observed a
coexpression pattern (Fig. 3a). Consistent with previous
studies13,17,18,39 and a recent pan-cancer analysis of TAMs40,
our results indicated that such a simple macrophage polarization
model defined in vitro was also not suitable for TAMs in CNS
tumors. We reasoned that the complicated stimuli that coexist
within the TME, rather than the one-way stimulus implied by the
in vitro model, induce the complex TAM activation status in
tumors41–43. Notably, we found that CCL2+ microglia exhibited
the highest M1 signature score, suggesting their stronger
antitumor capacity (Fig. 3b).

Studies have suggested that TAMs can originate from both
tissue-resident macrophages called microglia and tissue-invading
monocytes in brain tumors44,45. To explore the ontogenies of
TAM subsets in spinal ependymomas, we employed RNA velocity
analysis and identified two different origins of CD44+ TAMs
(Fig. 3c), including both CD14+ monocytes and CX3CR1+ TAMs.
In contrast, our velocity analysis revealed that CCL2+ TAMs
originated solely from CX3CR1+ TAMs (Fig. 3c). To complement
this prediction, we performed PAGA analysis46. As expected, we
observed that CX3CR1+ TAMs and CCL2+ TAMs showed much
lower connectivity with CD14+ monocytes (Fig. 3d, e), implying
that they were more likely to be TRMs or their derivatives.
Moreover, CD44+ TAMs were predicted to have strong
connectivity with both CX3CR1+ TAMs and CD14+ monocytes
(Fig. 3d). We used SingleR with data from Pombo et al.47 as a
reference to predict the origin of TAMs in ependymoma.
Consistently, CD44+ TAMs were predicted to have two diverse
origins, and CCL2+ TAMs mainly developed from tissue-resident
microglia (Fig. 3f). Scoring of cells according to the expression of
tissue-resident microglia-specific versus monocyte-derived macro-
phage-specific genes collected from human brain gliomas48

Fig. 2 Two TAM subsets show distinct functional phenotypes in ependymomas. a UMAP plot of seven subclusters of monocytes and TAMs. b Bar plot of
enriched hallmark pathways for genes upregulated in CCL2+ TAMs. P values were calculated by using enrichr function from R package clusterProfiler with
hypergeometric test statistical analyses. Source data are provided as a Source Data file. c Enrichment plot of the hallmark angiogenesis pathway in CD44+

TAMs. P values were calculated by using GESA function from R package clusterProfiler. d Kaplan–Meier plot showing worse clinical outcome for high
expression of CD44+ TAMs signature genes in LGG patients from TCGA. +, censored observations. P values were calculated by using both the log-rank
test and Cox proportional hazards model. e Representative example of an EPN tumor stained by IF. The upper panel image indicates AIF1+CD44+ TAMs
(the scale bar represents 30 μm). The dashed boxes highlight regions shown on the right side and the arrow depicts the CD44+ TAMs in fluorescent
images (the scale bar represents 100 μm). The bottom panel image indicates AIF1+CCL2+ TAMs (the scale bar represents 30 μm). The dashed boxes
highlight regions shown on the right side and the arrow depicts the CCL2+ TAMs in fluorescent images (the scale bar represents 100 μm). Images shown
are representatives of three samples from three independent experiments. f Heatmap showing TF activity for each TAM subsets. The row name showed
the regulon gene sets name and gene number is written in the round brackets. The red color marks the regulon of interest. g Heatmap showing cluster-
specific ATAC-seq peaks (left). Browser tracks showing ATAC-seq signals for selected marker genes (right). h Network plot of enriched curated gene sets
for genes regulated by EGR3 in CCL2+ TAM subset. Nodes for genes were colored by log2FC, and the sizes of nodes for enriched pathways were correlated
with the number of genes. i Network plot of enriched curated gene sets for genes regulated by TEAD1 in CD44+ TAM subset. Nodes for genes were
colored by log2FC, and the sizes of nodes for enriched pathways were correlated with the number of genes. See also Supplementary Figs. 2–3 and
Supplementary Data 3–5.
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further supported the diverse ontogenies of the two TAM subsets
(Fig. 3g). With immunostaining, we confirmed the presence of
CD44+ microglia (also TMEM119+) in EPN and AEP tumor
sections, indicating that some CD44+ TAMs were tissue-resident
microglia or their derivatives (Fig. 3h). However, fully elucidating
the complex trajectories of TAMs in the TME requires additional

lineage tracing studies. Collectively, our extensive analyses
indicated that CD44+ TAMs might develop from both CD14+

monocytes and CX3CR1+ TRMs, while CCL2+ TAMs might
develop from CX3CR1+ TRMs (Fig. 3i).

For a comprehensive description of TAMs in ependymoma, we
compared TAMs in our study with microglia in the normal
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brain49 and TAMs in glioblastoma (GBM)47,50 and IDH-mutant
high-grade gliomas (HGG)51. We noticed that microglia from the
normal brain showed high expression of CCL2 and CCL3,
resembling tissue-resident CCL2+ TAMs in ependymoma (Sup-
plementary Fig. 3f, g). For TAMs from other neurological tumors,
we observed that the CCL2+ TAM cluster was present in both
GBM and HGG, while the CD44+ TAM cluster was only present
in GBM (Supplementary Fig. 4a, b, d). Furthermore, integrated
analysis of TAMs from GBM and spinal ependymoma revealed
that the CD44+ TAMs from the two tumors were closely related to
each other, but they did not overlap in the UMAP plot, indicating
that they had their own characteristics in each tumor (Supple-
mentary Fig. 4c, e). Taken together, our analysis results indicated
that CD44+ TAMs were not specific to EPNs and could be present
in other but not all neurological tumors, which may be related to
the diverse tumor microenvironments of different cancer types.

Complex expression heterogeneity of malignant cells in each
ependymoma subtype. To study potential commonalities and
correct for interindividual variations, we applied Harmony
alignment52 to malignant cells in each cancer subtype separately.
We identified multiple subclusters in each cancer subtype and
assigned identities according to their signature genes (Fig. 4a, b,
Supplementary Fig. 5a–c, and Supplementary Data 6). Using EPN
as an example, our unsupervised clustering gave rise to seven
subclusters. The first cluster, C0, was characterized by high
expression of ATF3, JUN, and FOS and was termed NSC-like
(neural stem cell-like) according to a previous study19. The C2
cluster exhibited high expression of AQP1, a marker of astrocytes,
and was named astroependymal-like. The C5 cluster was char-
acterized by specific expression of cell cycle genes, such as MKI67
and TYMS, representing cells undergoing the cell cycle. The C6
cluster, termed immune-reactive, expressed high levels of inter-
feron response genes, including ISG15, suggesting its potential
roles in the immune response. The remaining subclusters were
named according to their differentially expressed genes. Among
the three subtypes, we identified both common (NSC-like and
astroependymal-like) and cancer-specific subclusters, such as the
immune-reactive subcluster in SE and EPN and the VEGFA+

subcluster in EPN (Fig. 4a). By evaluating the expression patterns
of the 12 reported generic tumor cell programs53 across our
malignant cells, we observed that the Cell_Cycle-related and
IFN_Response programs were highly expressed in specific
malignant subsets, but other programs were less different among
malignant subsets (Fig. 4c and Supplementary Fig. 5d). Our
analysis suggests that the generic tumor cell programs affected
some of the malignant cells in our spinal ependymoma dataset.

Evaluating hallmark pathways in the VEGFA+ C4 cluster and
other clusters from EPN by gene set variation analysis (GSVA)

revealed a strong enrichment of angiogenesis and hypoxia in the
VEGFA+ C4 cluster (Fig. 4d), suggesting its high capacity to favor
tumor progression. We then compared cell fractions in each
patient and observed that malignant cells from AEP displayed the
highest patient specificity in cell-type composition (Supplemen-
tary Fig. 5e), which was further confirmed by our entropy analysis
(Fig. 4e). We reasoned that this phenomenon might relate to the
different cell types of origin in each AEP patient. Comparing
malignant cells from our adult spinal ependymomas with those
from pediatric brain ependymomas19, we observed that malig-
nant cells isolated from spinal ependymomas in our study (from
SE, EPN, and AEP) were grouped together, while malignant cells
collected from pediatric brain ependymomas (from ST and PF)
were grouped together, indicating that malignant cells from
different anatomic locations exhibited diverse transcriptomic
profiles (Supplementary Fig. 5f), highlighting the necessity of
studying the transcriptomic characteristics of malignant cells in
adult spinal cord ependymomas. These analyses described the
heterogeneity of malignant cells and revealed different cellular
compositions in each subtype.

To inform future therapeutic approaches targeting malignant
cells of spinal ependymomas, we next examined potentially
targetable biomarkers specific to the expression signatures of
malignant cells in each cancer subtype. By comparing malignant
cell population-specific genes with the Drug Gene Interaction
database (DGIdb)54, we identified hundreds of pharmacologically
targetable genes from different categories in each cancer subtype
(Fig. 4f and Supplementary Data 7). Notably, for the common
astroependymal-like and NSC-like subpopulations, although we
revealed more cancer type-specific druggable vulnerabilities across
cancer subtypes, the shared candidates, including the transcription
factor gene EEF1A1 and the kinase gene CCNL1, might help unify
the pharmacological treatment of spinal ependymomas (Fig. 4g).
For the VEGFA+ subpopulation in EPN, our analysis indicated
druggable vulnerabilities, including the growth factor genes
VEGFA, VEGFB, and EFEMP1, the transporter genes SLC16A3,
ABCA1, and SLC2A3, the G protein-coupled receptor gene LPAR1
and the DNA repair gene NPM1 (Fig. 4h). We reasoned that these
targetable genes revealed by our scRNA-seq data would provide
valuable insights for future therapeutic strategies.

Transcriptional differences reveal cancer subtype-specific
characteristics. We hypothesized that defining biological pro-
grams activated in cells from different cancer subtypes may
explain their different degrees of malignancy. We first compared
the transcriptomes of malignant cells from different cancer sub-
types (Supplementary Data 8), and our enrichment analyses of
hallmark pathways revealed specific pathways upregulated in
tumor cells from AEP and EPN (Supplementary Data 4). Tumor

Fig. 3 Developmental trajectory of TAM subsets in spinal ependymomas. a Scatter plot showing the Pearson correlation between the M1 and
M2 signature scores. b Box plot showing the M1 signature score in each TAM subset. P values were calculated by the Wilcoxon test, two-sided
comparisons. Multiple hypothesis correction using the Benjamini–Hochberg procedure. n= 15,049 cells. The center line, bounds of box, and whiskers
represent mean, 25th to 75th percentile range, and minimum to maximum range in all boxplots. c Steady-state RNA velocity of TAM subsets. d PAGA
graph showing the inferred developmental trajectories for TAM subsets. The edge width was correlated with the strength of connectivity between two
subclusters. e Bar plot showing PAGA connectivity with CD14+ monocytes. f Bar plot showing the proportion of monocyte origin and tissue-resident
microglia origin across each TAM subset (using data reported by Pombo et al. as a reference). Source data are provided as a Source Data file. g Scatter plot
showing the scores by average expression of signature genes of tissue-resident microglia versus monocyte-derived macrophages. h Representative
examples of tumor section stained by IF. The upper panel image indicates CD44+ TMEM119+ microglia in EPN tumor (the scale bar represents 30 μm). The
dashed boxes highlight regions shown on the right side and the arrow depicts the CD44+ microglia in fluorescent images (the scale bar represents
100 μm). The bottom panel image indicates CD44+ TMEM119+ microglia in AEP tumor (the scale bar represents 30 μm). The dashed boxes highlight
regions shown on the right side and the arrow depicts the CD44+ microglia in fluorescent images (the scale bar represents 100 μm). Images shown are
representatives of three samples from three independent experiments. i Model of the developmental trajectory of monocyte/TAM lineages in spinal
ependymomas. See also Supplementary Figs. 3 and 4.
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cells from EPN exhibited an enrichment of the
mTORC1 signaling pathway, while tumor cells from AEP showed
a significant enrichment of the TGF-β, IL2/STAT5, and Hedge-
hog signaling pathways (Fig. 5a, b). In addition, tumor cells from
AEP showed a significant enrichment of genes from angiogenesis
pathways, including the genes VEGFA and SPP1 (Fig. 5b), which

play critical roles in controlling the growth of cancer by mod-
ulating blood supply in solid tumors55. Notably, one common
upregulated pathway in AEP and EPN was the
epithelial–mesenchymal transition (EMT) pathway (Fig. 5a, b), an
important program that is involved in both cancer development
and progression56. Using bulk histone modification ChIP-seq
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data and scATAC-seq data of malignant cells, we further inves-
tigated the epigenetic regulation of the EMT pathway in AEP.
Since tumor cells occupied most of the tumor tissues, the bulk
ChIP-seq data represented the characteristics of tumor cells.
Therefore, we focused the multiomic analysis on only malignant
cells and ultimately identified 42 EMT-related genes with active
epigenetic signals (Fig. 5c and Supplementary Data 9). Gene
CDH6, aberrantly reactivated in cancer and a TGF-β target that
can drive the embryonic EMT pathway57, exhibited transcrip-
tional activity around its TSS (Supplementary Fig. 5g) and was
upregulated in AEP tumor cells (Fig. 5b). To further investigate
the regulatory network associated with CHD6, we predicted its
upstream TFs based on scATAC-seq data of tumor cells and
revealed that NFIB was one of the upstream regulators (Fig. 5d,
e). Moreover, we noticed that the expression of NFIB was upre-
gulated in tumor cells from AEP (Fig. 5f), further implying that
NFIB might have crucial effects on the enhanced activity of the
EMT pathway in malignant cells.

We next examined the transcriptomic differences between
TAM subsets in different cancer subtypes. Interestingly, we
observed that CD44+ TAMs from EPN expressed higher levels of
SPP1 (Supplementary Data 10), which has been reported as a
marker of angiogenesis-associated TAMs in colon cancer18. We
further quantified the score of the angiogenesis pathway in
CD44+ TAMs from each cancer subtype and observed signifi-
cantly increased activity in CD44+ TAMs from EPN and AEP
compared with that in CD44+ TAMs from SE (Fig. 5g),
suggesting the stronger pro-tumorigenic properties of CD44+

TAMs in EPN and AEP. In addition, for CCL2+ TAMs, higher
expression of IL15, which can reduce the immunosuppressive
effects of regulatory T cells (Tregs)58, and lower expression of the
immunosuppressive gene TREM259 were observed in SE
(Supplementary Fig. 5h), suggesting the higher antitumor
capacity of CCL2+ TAMs in SE. In addition, we identified lower
expression of the pro-apoptotic gene PMAIP160 and higher
expression of the anti-apoptotic gene BCL261 in CCL2+ TAMs
from SE (Supplementary Fig. 5h), indicating their lower apoptotic
activity. Scoring the apoptosis signatures in CCL2+ TAMs in each
cancer subtype further supported the notion that CCL2+ TAMs
from EPN were more likely to undergo apoptosis (Fig. 5h). We
confirmed that the proportion of CASP3+ TAMs was higher in
AEP than in EPN by using IF staining (Fig. 5i, j), which
complemented the limited number of CCL2+ TAMs in AEP
found by our scRNA-seq data. Therefore, our analyses indicate
that the CD44+ and CCL2+ TAMs, which played distinctive roles
in inflammatory responses and regulating tumor growth, were
correlated with the different degrees of malignancy across cancer
subtypes, suggesting that the characteristics of TAMs could be
used as a marker for different subtypes.

Cell–cell interactions inform stromal cells to regulate TAM
subset diversity. To elucidate the underlying reasons for the
functional diversity of TAM subsets, we first performed cell–cell
interaction analysis by using CellPhoneDB62 (Supplementary

Fig. 6a). Overall, tumor cells in each cancer subtype exhibited
more interaction events with fibroblasts, endothelial cells and
pericytes than with other cell types (Supplementary Fig. 6b). To
explore extracellular signals that drive the special phenotype of
CD44+ TAMs, we then performed NicheNet analysis63, which
links ligand and target gene expression. Interestingly, NicheNet
predicted a panel of ligands that might drive the unique signature
genes of CD44+ TAMs (Fig. 6a), including three genes (CTGF,
SFRP2, and ANGPT1) associated with angiogenesis64–66. Fur-
thermore, we broadly surveyed the expression of the three ligands
and observed that they were highly expressed in fibroblasts,
endothelial cells, and pericytes, with diverse patterns across cancer
subtypes (Fig. 6b). In addition, we observed more interaction
events between CD44+ TAMs and fibroblasts and endothelial cells
and pericytes in AEP (Fig. 6c), including the WNT5A-ROR2,
JAG1-NOTCH3, and ANGPT2-TEK ligand–receptor (LR) pairs
(Supplementary Fig. 6c), which are related to angiogenesis67–69. IF
staining of EPN and AEP tumors also showed the physical jux-
taposition of CD44+ TAMs and endothelial cells (Fig. 6d and
Supplementary Fig. 6d). Our analysis thereby implied that com-
munication with fibroblasts, endothelial cells, and pericytes might
induce the angiogenesis phenotype of CD44+ TAMs.

We also performed NicheNet analysis to prioritize the ligands that
induced the phenotype of CCL2+ TAMs and identified the
apoptosis-associated ligand PGF70 (Supplementary Fig. 7a). Further-
more, we noticed that PGF was highly expressed in fibroblasts,
endothelial cells and pericytes (Supplementary Fig. 7b), implying that
these cells might be involved in inducing the apoptosis of CCL2+

TAMs. We next examined cell–cell interaction events around CCL2+

TAMs. Compared with CD44+ TAMs, CCL2+ TAMs showed more
interactions with immune cells (Fig. 6e), consistent with their
important roles in the inflammatory response. Close inspection of the
LR pairs revealed significant enrichment of the IL15-IL15RA
interaction between CCL2+ TAMs and CD4+ T cells in SE (Fig. 6f
and Supplementary Fig. 7c), further supporting that the upregulation
of IL15 in SE might reduce the immunosuppressive effects of Tregs58.
In addition, we identified significant interactions in SE between
CCL2+ TAMs and other immune cells, including T cells, through
SIRPA-CD47 (Fig. 6f), which might regulate their homeostasis and
modulate their immune response71. We confirmed the physical
juxtaposition of CCL2+ TAMs and T cells by IF staining (Fig. 6g and
Supplementary Fig. 7d). These analyses informed us of a potential
mechanism for the higher antitumor capacity of CCL2+ TAMs in SE.

Discussion
Patients diagnosed with spinal ependymomas suffer from multi-
ple symptoms, including neck and back pain, spasticity in the
lower extremities, gait ataxia, sensory loss, paresthesias, and
paralysis4. Due to the difficulty of surgical removal, new ther-
apeutic strategies for spinal ependymomas are urgently needed
clinically. Immunotherapy is believed to be the most promising
approach for cancer treatment. Here, our analyses of scRNA-seq
and scATAC-seq data characterized the cellular diversity in the
TME of spinal ependymomas and highlighted two functionally

Fig. 4 Heterogeneity of malignant cells in each ependymoma cancer subtype. a UMAP plots showing subclusters of malignant cells in each cancer
subtype, donor effect corrected by Harmony. b Heatmap showing signature genes for each malignant cell subcluster in EPN. Selected genes were labeled
on the right side. c Scatter plots showing average expression of 12 generic tumor cell programs in each malignant subset in EPN. The boxes highlight
programs which were expressed in specific subsets. d Bar plot showing different pathways enriched in VEGFA+ C4 and other clusters from EPN scored per
cell by gene set variation analysis (GSVA). t values were calculated with limma regression. e Density plot showing the entropy of patient distribution for
malignant cells in each cancer subtype. f Circular bar plot showing the number of targetable genes from different categories in each cancer subtype. g Venn
plots showing the intersection of targetable genes in astroependymal-like and NSC-like subpopulations across different cancer subtypes. The shared genes
between the three cancer subtypes are listed on the right side. h Bar plot showing the number of targetable genes from different categories in VEGFA+

subpopulation of EPN. Source data are provided as a Source Data file. See also Supplementary Fig. 5 and Supplementary Data 6 and 7.
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diverse TAM subsets, providing insights for TAM-targeting
immunotherapy.

CCL2+ TAMs, representing the activated TAMs in the TME,
were more likely to interact with immune cells and showed a high
immune-response capacity, implying their antitumor roles in

ependymomas. We noticed that these CCL2+ TAMs exhibited
high levels of apoptosis in EPN and AEP. Approaches that inhibit
apoptosis of CCL2+ TAMs might help encourage the immune
system to attack tumors. In contrast, CD44+ TAMs expressed
high levels of angiogenesis-associated genes and tended to
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interact with endothelial cells, pericytes and fibroblasts to facil-
itate tumor angiogenesis. Here, we observed a higher pro-
angiogenic capacity of CD44+ TAMs in EPN and AEP, providing
a plausible explanation for the different degrees of malignancy
across cancer subtypes. We reason that strategies that inhibit
these CD44+ TAM populations might decelerate the progression
of ependymomas. Numerous studies have shown the therapeutic
targeting of TAMs can contribute to tumor immunotherapy and
the strategies can be roughly divided into three approaches72:
eliminating TAMs already present in the TME73,74, inhibition of
monocyte recruitment75 and reprogramming of TAMs76.
Clodronate-loaded and zoledronate acid-loaded liposomes have
been applied to deplete TAMs resulted in decreasing tumor
angiogenesis and progression in preclinical solid tumor models
successfully, which indicate that these treatments could also be
used to deplete CD44+ TAMs in spinal ependymoma.

To investigate the intracellular factors that mediated the
functional diversity of TAMs, we further performed scATAC-seq
data analysis and revealed that TEAD1 and EGR3 regulated the
functional diversity of the CD44+ and CCL2+ TAM subsets,
respectively. Previous studies reported that TFs from the TEAD
family have a substantial effect on cancer development, pro-
gression, and metastasis, suggesting that TEAD proteins could
serve as potential therapeutic targets77–79. Here, we discovered
the regulatory roles of TEAD1 in CD44+ TAMs, further high-
lighting its potential application in ependymoma immunother-
apy. Moreover, EGR3 motif enrichment analysis showed the
strong correlation of EGR3 with the TNF pathway in CCL2+

TAMs; this result indicates that EGR3 plays important role in
tumor inflammation, which was consistent with the tumor-
suppressive role of EGR3 in certain cancer events80.

For intercellular factors, we uncovered the roles of stromal cells,
including fibroblasts, endothelial cells, and pericytes in regulating
the functional diversity of TAM subsets in spinal ependymomas.
Furthermore, we prioritized multiple ligands that might induce
the phenotypes of the CD44+ and CCL2+ TAM subsets. For
example, we predicted the regulatory relationship between the
ligand PGF and apoptosis-associated genes (NEDD9 and PMAIP1)
in CCL2+ TAMs, implying that factors blocking PGF might
inhibit the apoptosis of CCL2+ TAMs. These findings invite more
investigations to reveal the molecular mechanisms underlying the
phenotypic diversity of TAMs, which would further facilitate the
development of TAM-targeting immunotherapy.

By comparing malignant cells from our adult spinal ependy-
moma with those from pediatric brain ependymoma with single-
cell transcriptomic analysis, we found that the malignant cells of
ependymomas exhibited heterogeneity across anatomic locations,
suggesting that knowledge of one type of ependymoma may be
unable to be applied to others. By analyzing TAMs isolated from
other CNS gliomas, we observed that CD44+ TAMs were also
present in GBM, showing a similar expression pattern as those in
ependymoma, although they hardly existed in gliomas, indicating
that TAM-targeting immunotherapy strategies based on these
dual-function TAMs are applicable to multiple types of tumors
but not all neurological tumors.

From this study, we were able to summarize potentially tar-
getable biomarkers in malignant cells from each spinal ependy-
moma subtype, which could inform future therapeutic
approaches targeting spinal ependymomas. We also identified
diverse activity of the EMT pathway across different spinal
ependymoma subtypes, which was associated with their increas-
ing degrees of malignancy. Furthermore, by combining the results
of scRNA-seq, scATAC-seq, and bulk ChIP-seq data analyses, we
identified the NFIB-CDH6-regulatory program as a potential
mediator of the enhanced activity of the EMT pathway.

Overall, our multiomics analyses characterized spinal ependy-
momas heterogeneity at both the transcriptomic and epigenomic
levels. In particular, we highlighted the multifaceted roles of
TAMs in tumor progression, indicating that TAM subtype-
specific gene expression could be an indicator of the degree of
malignancy and that TAM subtype-targeting immunotherapy
may have the potential to enhance the immune system to elim-
inate tumors.

Methods
Patient samples. Fifteen treatment-naïve patients who were pathologically diag-
nosed with ependymoma subtypes, including seven males and eight females, were
enrolled in this study after approval by the Ethics Committee of Beijing Tiantan
Hospital, Capital Medical University. All patients provided written informed
consent for sample collection and data analyses. We summarized the available
clinical characteristics in Supplementary Data 1.

Tumor tissue harvest and dissociation for single-cell suspension
Live-cell isolation from fresh tissue. We collected fresh tumor tissue during surgery
and stored in cold phosphate-buffered saline (PBS) to transfer to the laboratory on
ice immediately. Tumor tissue was dissociated mechanically with the digestion
buffer (2 mg/ml collagenase IV (Gibco), 10 U/ml DNase I (NEB), and 1 mg/ml
papain (Sigma) in PBS). After incubation for about 20–30 min at 37 °C on a

Fig. 5 Transcriptional differences detected by scRNA-seq analyses reveal cancer subtype-specific characteristics. a Bar plot of enriched hallmark
pathways for genes upregulated in malignant cells from EPN. Adjusted P values were labeled for each pathway. Adjusted P values were calculated by using
enrichr function from R package clusterProfiler with hypergeometric test statistical analyses. b Bar plot of enriched hallmark pathways for genes upregulated
in malignant cells from AEP (top). Network plot of enriched hallmark pathways for upregulated genes in malignant cells from AEP. Nodes for genes were
colored by log2FC, and sizes of nodes for enriched pathways were correlated with the number of genes (bottom). Adjusted P values were labeled for each
pathway. Adjusted P values were calculated by using enrichr function from R package clusterProfiler with hypergeometric test statistical analyses. c Venn
plot showing the intersection of EMT-related genes with active transcriptional signals. The shared genes are listed on the right side. The red color marks
the key genes of interest. d Network plot showing the connection between CDH6 and its upstream TFs. Sizes of circles were related to the correlation value
between CDH6 and TFs. e Normalized scATAC-seq profile of CDH6 in AEP across each major subpopulation and NFIB-CDH6 binding site. f Box plot
showing the normalized gene expression of NFIB from different cancer subtypes. Adjusted P values were calculated by the Wilcoxon test, two-sided
comparisons. n= 122,456 cells. The center line, bounds of box, and whiskers represent mean, 25th to 75th percentile range, and minimum to maximum
range in all boxplots. g Box plot showing the angiogenesis signature score of CD44+ TAMs from different cancer subtypes. Adjusted P values were
calculated by the Wilcoxon test, two-sided comparisons. n= 3912 cells. The center line, bounds of box, and whiskers represent mean, 25th to 75th
percentile range, and minimum to maximum range in all boxplots. h Box plot showing the apoptosis signature score of CCL2+ TAMs from different cancer
subtypes. Adjusted P value was calculated by the Wilcoxon test, two-sided comparisons. n= 4647 cells. The center line, bounds of box, and whiskers
represent mean, 25th to 75th percentile range, and minimum to maximum range in all boxplots. i Representative example of an EPN and AEP tumor stained
by IF. The arrow depicts the CASP3+ TAMs in fluorescent images, and the scale bar represents 30 μm. j Bar plot showing the proportion of CASP3+ TAM
in EPN and AEP (n= 3 biologically independent samples). The P value was calculated by t test, Two-way ANOVA analysis. Data are presented as mean
values +/− SEM. Source data are provided as a Source Data file. See also Supplementary Fig. 5 and Supplementary Data 4 and 8–10.
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thermocycler, 10% fetal bovine serum (Gibco) was used to stop the digestion
system. Single-cell suspensions dissociated from the tumor were resuspended in
0.04% BSA/PBS and stained with 7-amino-actinomycin D (7-AAD) to sort 7-
AAD-negative cells by FACS for single-cell libraries preparation.

Nuclei isolation from frozen tissue. Frozen tumor tissue was homogenized into small
cell pellets using a glass tissue grinder (Sigma, Cat #D8938) in ice-cold EZ buffer

(Sigma, Cat #NUC-101) and incubated on ice for 5min. Then nuclei were centrifuged
at 500 × g for 5 min at 4 °C. Repeat the wash and centrifuge step again. After that, nuclei
were resuspended with PBS, and Debris Removal Solution (MACS) was added to
effectively remove cell debris. Isolated nuclei were suspended in Nuclei Suspension
Buffer (NSB; consisting of 1× PBS, 0.01% BSA and 0.1% RNase inhibitor (Clontech, Cat
#2313A)). A final nuclei suspension was filtered through a 35-μm cell strainer (Corning,
Cat #352235) and used for single-cell libraries preparation.
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Library preparation and sequencing. Single-cell/nuclei were processed using
Chromium Single Cell V2 or V3 Chemistry Library Kits (10× Genomics) and GEM
ATAC v1.1 Kits (10× Genomics) according to the manufacturer’s instructions.
Thousands of cells/nuclei were partitioned into Gel Beads-in-emulsion (GEMs) on
the Chromium Controller, followed by full-length cDNA generated, barcoded, and
sequenced on an Illumina NextSeq4000.

Immunohistochemistry. We dropped fresh tumor tissue in 4% paraformaldehyde
overnight at 4 °C. After being washed with PBS three times for 10 min, the fixed
tissue was placed in 20% and 30% sucrose solution to dehydrate and then was
embedded in optimal cutting temperature medium (Thermo Scientific). Embedded
tissue was sectioned at 20–30 μm cryosections using Leica CM3050S cryostat.
Before IHC staining, tissue slices were subjected to heat-mediated antigen retrieval
with Tris/EDTA buffer (PH 9.0). Then, tissue slices were blocked in 5% donkey
serum for 2 h. Sections were incubated with primary antibody at the following
dilutions: goat anti-IBA1 (1:100, Abcam, ab5076), Rabbit anti-MCP1 (1:100,
Abcam, ab73680), mouse anti-CD44 (1:100, Abcam, ab16728), rabbit anti-VWF
(1:100, Abcam, ab9378), mouse anti-CD3 (1:50, Abcam, ab699), rabbit anti-cleaved
Caspase-3 (1:200, Cell Signaling, #9661), rabbit anti-TMEM119 (1:1000, Abcam,
ab185333). After incubation overnight at 4 °C with primary antibody, Alexa Fluor
488, 594, or 647 fluorophore-conjugated secondary antibodies (1:500) (Life
Technologies), and DAPI (1:500) were added to slices incubation buffer for 2 h. We
used Olympus FV3000 confocal microscope for collecting images.

Chromatin immunoprecipitation-sequencing (ChIP-seq). CUT& Tag ChIP-seq
were performed as described81. Nuclei were washed twice in Wash Buffer (20 mM
HEPES pH 7.5; 150 mM Nacl; 0.5 mM Spermidine; 1× Protease inhibitor cocktail).
Add 10 μl Concanavalin A-coated magnetic beads (Bangs Laboratories) per sample
and incubated at RT for 15 min. Remove supernatant and resuspend in Dig-wash
Buffer (20 mM HEPES pH 7.5; 150 mM NaCl; 0.5 mM Spermidine; 1× protease
inhibitor cocktail; 0.05% digitonin), supplementing 2 mM EDTA and the primary
antibody in 1:50 dilution. Incubate primary antibody overnight at 4 °C and then
replaced it with secondary antibody (1:50 diluted in Dig-Wash buffer). Secondary
antibody incubation was performed at room temperature (RT) for 30 min.
Unbound antibodies in Nuclei was washed using the magnet stand 2–3 times for
5 min. pA-Tn5 adapter complex was diluted in 1:200 using Dig-med Buffer (0.05%
digitonin, 20 mM HEPES, pH 7.5, 300 mM NaCl, 0.5 mM Spermidine, 1× protease
inhibitor cocktail). Nuclei was resuspended in Dig-med Buffer and incubated with
pA-Tn5 at RT for 1 h. After washed, nuclei were resuspended in Tagmentation
buffer (10 mM MgCl2 in Dig-med Buffer) and incubated at 37 °C for 1 h. 2.25 µL of
0.5 M EDTA, 2.75 µL of 10% SDS, and 0.5 µL of 20 mg/mL Proteinase K were
added to 50 µL of sample to stop tagementation and then inactivate Proteinase K at
70 °C for 20 min. Ampure XP beads were used to extract DNA. DNA was amplified
using universal i5 and uniquely barcoded i7 primer and cleaned up by adding 1.1×
Ampure XP beads (Beckman Colter). DNA libraries were sequenced on an Illu-
mina NextSeq4000.

scRNA-seq data processing. scRNA-seq experiments were performed on
15 samples (Supplementary Data 1), the raw data of which are accessible under
database Genome Sequence Archive (GSA: HRA001112) or database Gene
Expression Omnibus (GEO: GSE163686). scRNA-seq data generated from 10×
Genomics were processed using the Cell Ranger Single-Cell Software Suite (v3.0.1),
which aligned sequencing reads to hg19 human reference genome and quantified
gene expression levels of single cells. We merged cells from different tumors using
the CellRanger aggr pipeline and the preliminary filtered data were used for
downstream analysis. First, we applied further quality control to cells according to

three different metrics step by step, including the total UMI count, the number of
detected genes, and the proportion of mitochondrial gene count per cell. Specifi-
cally, we filtered cells with less than 2000 UMI count or 500 detected genes, as well
as cells with more than 20% mitochondrial gene count. To remove potential
doublets, we also removed cells with UMI count above 70,000 and the number of
detected genes above 10,000. Here, we used a relatively high threshold because
malignant cells are thought to express a greater number of genes. Furthermore, we
removed potential doublets predicted by Scrublet82. Next, after quality control, we
applied the library-size correction method to normalize the raw count matrix by
using normalize_total function in SCANPY83. Then the logarithmized normalized
count matrix was used for the downstream analysis.

Dimension reduction and unsupervised clustering. We employed the workflow
of SCANPY83 to perform dimension reduction and graph-based unsupervised
clustering on scRNA-seq data. Briefly, we first selected 2000 highly variable genes
(HVGs) for downstream analysis by using scanpy.pp.highly_variable_genes func-
tion with parameter “n_top_genes=2000”. Then, effects of the total count per cell,
the percentage of mitochondrial gene count and the percentage of count for heat
shock protein associated genes (HSP) were regressed out by using scanpy.pp.re-
gress_out function. Principal component analysis (PCA) was performed on selected
HVGs by using scanpy.tl.pca function with parameter “svd_solver='arpack',
n_comps=100”, and generated a PCA matrix with 100 components. Next, we
employed bbknn algorithm with parameter “batch_key='patient', n_pcs=90” to
remove the batch effects from different donors and obtain a batch-corrected space.
To visualize our scRNA-seq data in a two-dimensional space, Uniform Manifold
Approximation and Projection (UMAP) dimension reduction was performed by
using scanpy.tl.umap function with default parameter. Last, to cluster single cells by
their transcriptional profiles, we used an unsupervised graph-based clustering
algorithm implemented in scanpy.tl.leiden function with different resolution
parameters adapted to diverse situations. The cluster-specific marker genes were
identified by using scanpy.tl.rank_genes_groups function with default parameter.
Specifically, we performed two round of dimension reduction and unsupervised
clustering for all cells. The first round (“resolution = 2”) was used to distinguish
malignant cells from nonmalignant cells and the second round (“resolution = 1”)
was applied to nonmalignant and malignant cells respectively. Notably, we used
scanpy.pp.neighbors function with default parameter to compute a neighborhood
graph instead of bbknn to avoid eliminating the great donor effects in malignant
cells. Subclusters within nonmalignant cells were annotated by using canonical
markers shown in Fig. 1e. To reveal the cellular diversity in monocytes and TAM,
we re-run the dimension reduction and unsupervised clustering with “resolution =
0.6”.

InferCNV analysis. Copy-number variations (CNVs) of cells were estimated by
computing a moving average of the relative expression by using InferCNV
(inferCNV of the Trinity CTAT Project, https://github.com/broadinstitute/
inferCNV)84. Nonmalignant cells including both stomal and immune cells were
used as to define a baseline of normal karyotype and their average copy-number
value was subtracted from all cells.

Enrichment analysis. We used enrichr and GESA functions from R package
clusterProfiler for hypergeometric test and gene set enrichment analysis, respec-
tively. Network plots of enriched pathways were visualized by function cnetplot
from R package enrichplot. The R package GSVA from Bioconductor was used for
gene set variation analysis. The gene sets (MSigDB) was loaded from R package
msigdf and pathways with high difference in activity scores were selected by
LIMMA package.

Fig. 6 Cell–cell interaction analyses inform the mechanism of the formation of two TAM subsets. a Heatmap showing potential ligands driving the
signature of CD44+ TAMs. The red color marks the genes of interest. b Heatmap showing the expression of selected ligands in stromal and immune cells
(top). Violin plot showing the expression of selected ligands in fibroblasts, endothelial cells and pericytes from each cancer subtype (bottom). c Bar plot
showing the fraction distribution of significant interaction events around CD44+ TAMs. The fraction of each interaction pair was calculated by dividing the
total number of interaction events related to CD44+ TAMs. d Representative example of an AEP tumor stained by IF with anti-AIF1 (red), CD44 (green),
VWF (gray), and DAPI (blue) antibodies. Dashed boxes highlight regions shown in the bottom panel. The white arrow depicts the CD44+ TAMs and the
yellow arrow depicts the endothelial cells in fluorescent images. The scale bar in the top panel represents 30 μm, and the scale bar in the bottom panel
represents 100 μm. Images shown are representatives of three samples from three independent experiments. e Bar plot showing the ratio of interaction
events of CCL2+ TAMs to that of CD44+ TAMs. The fraction of each interaction pair was calculated by dividing the total number of interaction events
related to CD44+ and CCL2+ TAMs. Source data are provided as a Source Data file. f Bubble heatmap showing selected significant LR pairs between CCL2+

TAMs and immune cells in each cancer subtype. Each row represents an LR pair, and each column defines a cell–cell interaction pair in a specific cancer
subtype. P values were indicated by circle color and size. The red-color marking was the key ligand–receptor pair of interest. P values were calculated by
CellPhoneDB. g Representative example of an EPN tumor stained by IF with anti-AIF1 (red), CCL2 (green), CD3 (gray), and DAPI (blue) antibodies. The
white arrow depicts the CCL2+ TAMs and the yellow arrow depicts the T cells in fluorescent images. The scale bar in the top panel represents 30 μm and
the scale bar in the bottom panel represents 100 μm. Images shown are representatives of three samples from three independent experiments. See also
Supplementary Figs. 6 and 7.
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Survival analysis. We used the top 30 genes of CD44+ TAM in Supplementary
Data 3 to perform survival analysis by using the GEPIA2 webserver (http://
gepia2.cancer-pku.cn/). Two cancer types (LGG and GBM) were selected to test the
correlation between the given signature gene list and patients’ survival time with
default parameters.

Quantification of gene set score. We used the average expression level of a given
gene set to quantify gene set score in every single cell. The M1 and M2 signatures
were extracted from the previous publication13. Other gene sets, including angio-
genesis and apoptosis were loaded from R package msigdf.

SCENIC analysis. We used SCENIC34 with raw count matrices as input to analyze
activated regulons in each TAM subset. Briefly, we inferred the coexpression
network by using GRNBoost2 python package and identified regulons by using
RcisTarget package. Then, regulon activity for each cell was quantified by AUCell
package, and differentially activated regulons in each TAM subset were identified
by wilcox.test using other subsets as control. Finally, Benjamini–Hochberg proce-
dure was used to correct the multiple hypothesis.

Developmental trajectory analysis
RNA velocity. We used Velocyto pipeline85 to annotate spliced and unspliced reads
and generated the loom file for downstream analysis. Then the python package
scVelo86 was used to estimate the steady-state RNA velocities by using default
parameters. Finally, the velocities were projected onto UMAP embedding and
visualized on the cellular level by using scv.pl.velocity_embedding function. Here we
removed CD16+ monocytes because monocyte-derived macrophages were more
likely to develop from CD14+ monocytes18.

PAGA. We further used the partition-based graph abstraction method PAGA83 to
assess the developmental trajectories for TAMs. The computations were carried out
using default parameters. The edge connectivity with CD14+ monocytes between
each subpopulation node are further visualized in the bar plot.

Predicting the origins of TAMs by using SingleR. To quantify the fraction of TAMs
from different origins (microglia or monocytes), we used SingleR87, a predictor
mainly based on transcriptomic similarity with the reference dataset. Here, we used
the published data47 with both Mg-TAMs (microglia-derived TAMs) and Mo-
TAMs (monocyte-derived TAMs) as a reference.

Integration of TAMs in our study with that from other neurological tumors.
We used Harmony52 to integrate TAMs from different studies. Briefly, TAMs were
first performed PCA analysis with 100 components by using the top 2000 highly
variable genes identified by scanpy.pp.highly_variable_genes function with para-
meter “n_top_genes=2000”. Then Harmony was applied to the 100 principle
components with default parameters to integrate TAMs from different studies and
generate a corrected embedding. Next, we used the first 30 Harmony corrected
dimensions to compute a neighborhood graph by using scanpy.pp.neighbors
function with default parameter. Finally, the UMAP dimension reduction was then
performed by using scanpy.tl.umap function with the default parameter.

Data harmonization and unsupervised clustering for malignant cells. We
applied Harmony alignment52 to malignant cells from different patients to study
their potential commonalities. We adopted two different algorithms to correct
different sources of intersample variations. BBKNN uses the mutual nearest
neighbors (MNNs) between different batches to correct batch effects, while Har-
mony deploys a local correction idea that preferentially clusters cells from different
batches, thereby better matching the distributions of the shared cell types across
donors. For each cancer type, malignant cells were first performed PCA analysis
with 100 components as described earlier. Harmony was then applied to the 100
principle components with default parameters to integrate malignant cells from
multiple patients and generate a corrected embedding. Next, we used the first 20
Harmony corrected dimensions to compute a neighborhood graph by using
scanpy.pp.neighbors function with parameter “n_neighbors=10”. Uniform Manifold
Approximation and Projection (UMAP) dimension reduction was then performed
by using scanpy.tl.umap function with default parameter. Last, we used the same
unsupervised graph-based clustering algorithm to cluster malignant cells and the
same function for marker gene identification as described earlier. Notably, we
excluded three patients (EPN2, EPN3, and EPN5) in this analysis because of the
limited malignant cell numbers.

Evaluation of mixability with entropy metric. We adopted an entropy-based
metric to quantify the mixability of malignant cells across different patients after
data harmonization13. Specifically, we randomly sampled 25,000 malignant cells
and constructed a kNN graph (k = 80) based on the Euclidean distance in UMAP
coordinates by using function kNN from R package dbscan. We defined the

mixability of cells across patients as Shannon entropy,

Hi ¼ � ∑
D

d¼1
pdi log2p

d
i ð1Þ

where pdi is the fraction of cells from patient d in the 80 nearest neighborhoods of
cell i and ∑D

d¼1p
d
i ¼ 1.

Targetable biomarkers identification. Drug Gene Interaction database
(DGIdb)54, a valuable resource that focuses on expert-curated collections of
druggable genes, was used to examine potential targetale biomarkers within the
specific gene signatures (top 100 genes reported by scanpy.tl.rank_genes_groups
function) of each malignant cell subpopulation from each cancer subtype. We
excluded DGIdb hits that were categorized as druggable genome, which was pre-
dicted on the basis of sequence and structural similarity88.

Differential analysis for malignant cells from different cancer types. Here we
first combined the raw count matrix of malignant cells from each cancer type
together and then used the sc.pp.normalize_total function from SCANPY to nor-
malize the combined data matrix (library-size corrected), which made the counts
comparable among cells. Finally, the logarithmized count matrix was used for
differential analysis by the SCANPY function sc.tl.rank_genes_groups using the
Wilcoxon test.

Comparison of adult spinal cord ependymoma and pediatric brain ependy-
moma. To compare malignant cells from our study with that from a published
dataset, we first extracted the top 50 signature genes (reported by SCANPY) for
each malignant cell subpopulation and then aggregated their averaged expression
level in each cell population within each tumor type. Finally, the pairwise corre-
lation of the averaged expression level was calculated by cor function in R with
default parameters and visualized in the heatmap.

Cell–cell interaction analysis. We applied CellPhoneDB62 to infer cell–cell
interaction between cells in each cancer type. The enriched ligand–receptor
interactions between two cell subsets were calculated based on the permutation test.
We extracted significant ligand–receptor pairs with P value < 0.05, and summarized
the number of interaction events related with tumor cells by the union of sig-
nificant ligand–receptor pairs. Circle plots depicting the number of interactions
between cell types are drawn using R package circlize.

NicheNet analysis. We used NicheNet63 to predict ligands that drive the signature
genes of the two TAM subsets. We first calculated DEGs in both CCL2+ and
CD44+ TAMs. Then, DEGs with log2FC > 0.2 and adjusted P value < 0.05 in each
TAM subset were used as gene sets of interest, respectively. All expressed genes in
CCL2+ or CD44+ TAMs were used as the background of genes. Genes were
considered as expressed when they have nonzero values in at least 10% of the cells
in a cell type. Here, sender cell type was not specified to broadly examine ligand’s
activity.

Evaluating expression patterns of the reported generic tumor cell programs
across malignant cell subsets. We downloaded the 12 generic tumor cell pro-
grams from the pan-cancer single-cell analysis of cancer cell lines53. The average
expression of each generic tumor cell program in each malignant cell was calcu-
lated and scaled to 0–1. To quantify the aggregated expression level of each pro-
gram in each malignant subset, we further calculated the average expression scores
for each program across each subset and visualized their patterns in scatter plots.

Data processing of single-cell ATAC-seq. scATAC-seq experiments were per-
formed on two samples (Supplementary Data 1), the raw data of which are
accessible under database Genome Sequence Archive (GSA: HRA001112) with
GSA individual accession number HRI137901 and HRI137902. scATAC-seq raw
data for samples HRI137901 and HRI137902 can be obtained under GSA Run
accession HRR337425 and HRR337426 respectively. The Cell Ranger software
(v3.0.1)89 performed reads filtering, alignment, and transposase cut sites identifi-
cation. Cell by feature matrix with a window size of 2.5 kb was generated as
described previously89 by first reading fragment file into R. Next, the Genomi-
cRanges of the fragments were concatenated for each “start” and “end” followed by
identifying all overlaps with the feature by insertions using R function findOverlaps.
Then the fraction of Tn5 insertions was computed by dividing the cells-wise sum of
the count matrix by the number of insertions for each cell. The processed count
matrix was first binarized and then log-normalized for downstream analysis. The
binarized count matrix was passed to Signac90 for dimension reduction and
clustering. Signac function RunTFIDF and RunSVD were performed with default
parameters for dimension reduction analysis. Briefly, the count matrix was the first
frequency-inverse document frequency (TF-IDF) transformed by dividing each
index by the cellwise sum of the matrix multiplying with the inverse document
frequency computed as log(1+ ncol(matrix)/rowSums(matrix)). Singular value
decomposition (SVD) was then performed on the TD-IDF matrix for dimension
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reduction. Clustering was done with the function FindNeighbors and FindClusters.
Peak calling for each cluster was performed with fragments from cells in the cluster
using MACS291 with parameters ‘–nomodel –shift 75 –extsize 150 –qval 5e-2 -B -f
BED –nolambda –keep-dup all –call-summits’ callpeak with MACS2 software (v
2.2.7.1). We retained those peaks only whose q values were less than 0.05 for
further analysis and considered these peaks as reproducible peaks. The q value of
each peak call is computed adjusting P value to control the false discovery rate with
multiple testing correction which is a measure of statistical significance of the peak
call. Peaks from each cluster were then merged and a binarized cell-by-peak matrix
was constructed by converting nonzero counts to 1. The generated cell-by-peak
matrix was then used to create a Signac object. Cells that pass the following quality
criterion were kept: (1) the number of fragments in peaks between 1000 and
20,000; (2) the fraction of fragments in peaks greater than 10%; (3) transcriptional
start site (TSS) enrichment score greater than 2; (4) ratio reads in genomic blacklist
regions smaller than 0.05; (5) nucleosomal signal strength smaller than 4. In total,
4922 cells from two samples were initially profiled, and 2845 cells passed the
quality control for further analyses. The filtered cell-by-peak matrix was passed to
Signac function RunTFIDF and RunSVD for dimension reduction and function
FindNeighbors and FindClusters for cluster identification. FindNeighbors was per-
formed with reduced dimension components 2:30. FindClusters was performed by
setting resolution to 0.3. Next, gene activity matrix was generated by quantifying
the activity of each gene in the genome by accessing gene-associated chromatin
accessibility using function GeneActivity. Clusters were then annotated based on
gene activity score profiles of known cell-type markers. TEKT1, GFAP, OLIG2,
NEUROD6, and CD68 were used to name major cell types as ependymal-like cells,
astrocytependymal-like cells, oligodendrocyte progenitor cell (OPC), neuronal-like
cells, and TAMs, respectively.

Calculation of differentially accessible peaks. Differentially accessible peaks
were computed with Signac function FindAllMarkers by setting parameters test.use
= “LR” and latend.vars = “peak_region_fragments”. Only peaks with adjusted P
value smaller than 0.05 were considered as differentially accessible peaks.

Co-accessible regulatory network. To build co-accessible regulatory network, we
first identified upstream transcription factors of CDH6 whose peaks were enriched
for the malignant cells. Briefly, we computed differentially accessible peaks among
the malignant and microglia clusters with Signac function FindAllMarkers, fol-
lowed by identifying closest genes to each of these peaks with function Clo-
sestFeature. We then performed motif analysis for searching transcription factor
motifs closed to the transcription start site (TSS) of CDH6. Next, we computed the
intersection of the upstream TFs of CDH6 and the closest genes around those peaks
that were more accessible for malignant cells. Then, we computed correlation of the
transposed gene activity score matrix (cell in row and gene in the column) con-
taining only CDH6 and those intersected TFs. The correlation matrix was then
loaded into software Cytoscape92 for network visualization. Edges with a correla-
tion coefficient smaller than 0.15 were removed. The width of the edges and the
size of nodes were scaled with the correlation coefficients.

Integration of scRNA-seq and scATAC-seq data. To integrate scATAC-seq data
with snRNA-seq data, we first identified anchors between these two datasets with
Signac function FindTransferAnchors based on the expression and gene activity
profiles of highly variable genes identified from the scRNA-seq data. We then
computed the imputed gene expression for scATAC-seq cells based on the pre-
viously computed anchors with function TransferData. To construct co-embedding
for the scRNA-seq and scATAC-seq data, we next run Signac function RunPCA
and RunUMAP on the imputed gene expression matrix.

Motif enrichment. Motif enrichment was performed with FIMO from the MEME
suites93 to identify enriched binding motif in the genes’ regulatory regions.
Homer94 function annotatePeaks.pl was then used for motif binding site
annotation.

Visualizing differentially accessible peaks. The deeptools95 was applied to
visualize pileups of cluster-specific ATAC-seq signals in differentially
accessible peaks.

ChIP-seq data processing. ChIP-seq experiments were performed on two samples
(Supplementary Data 1), the raw data of which are accessible under database
Genome Sequence Archive (GSA: HRA001112) with GSA individual accession
number HRI137901 and HRI137902. H3K27ac and H3K4me3 ChIP-seq data for
sample HRI137901 can be obtained under GSA Run accession HRR337427 and
HRR337429 respectively. H3K27ac and H3K4me3 ChIP-seq data for sample
HRI137902 can be obtained under GSA Run accession HRR337428 and
HRR337430 respectively. Fastq-files were trimmed for adaptor sequence using
cutadapt (3.2)96 and then mapped to hg19 using Bowtie2 (2.4.2)97 with parameters
“-3 3 –no-discordant –no-mixed”. SAMtools (1.9) and bedtools (2.30.0) were
applied to filter mapped read pairs post alignment. MACS2 (2.2.7.1) was used for
peak calling with default parameters98. The visualization of peaks was realized by

IGV. For each sample, we identified active promoters by H3K4me3 peaks that
overlap H3K27ac within 1000bp to the nearest transcription start site (TSS).

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The scRNA-seq data generated in this study are available in the Gene Expression
Omnibus (GEO) database under accession number GSE163686 and also available in the
Genome Sequence Archive (GSA) database under accession number HRA001112. The
scATAC-seq and ChIP-seq data generated from two samples in this study are available in
the GSA database under accession number HRA001112. In particular, H3K27ac and
H3K4me3 ChIP-seq data for sample HRI137901 can be obtained under GSA accession
numbers HRR337427 and HRR337429, respectively. H3K27ac and H3K4me3 ChIP-seq
data for sample HRI137902 can be obtained under GSA accession numbers HRR337428
and HRR337430, respectively. scATAC-seq data for samples HRI137901 and HRI137902
can be obtained under accession numbers HRR337425 and HRR337426, respectively.
The data in GSA are available under restricted access, access can be obtained by
contacting Xiaoqun Wang (xiaoqunwang@ibp.ac.cn). The published datasets used in this
study can be downloaded from https://www.brainimmuneatlas.org/ or from GEO under
accession number GSE16312047; scRNA-seq data for TAMs from glioblastoma,
GSE16641851; scRNA-seq data for TAMs from IDH-mutant high-grade gliomas,
GSE8446550; scRNA-seq data for TAMs from glioblastoma and GSE6783549; scRNA-seq
data for macrophage from normal brain. The remaining data are available within the
Article, Supplementary Information or Source Data file. Source data are provided with
this paper.
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